Synesis Software Pty Ltd

Synesis Software Resources: -
White Papers I S YIN]= S | S http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003

M. D. Wilson, "Move Constructors"”

Copy Semantics

All types that support vaue-semantics [1] provide copy congtructors and copy assgnment operators, or
have them provided by the compiler [1]. Congder the following class:

class Sinple

{
publ i c:
explicit Sinple(int val)
: muval (val)
{}

Si npl e(Si npl e const &r hs)
: muval (rhs. mval)
{}

pr ot ect ed:
int mval;
b

The author of the class has specified the copy congtructor, but left it to the compiler to provide the copy
assgnment-operator [2]. It will be equivaent to the hand written form as follows.

class Sinple

1

publ i c:
Si nmpl e &operator =(Si nmpl e const &rhs)
{

mval = rhs. mval;

return *this;

b

Move Semantics

In a copy corgtructor, the ingtance being copied from — the rvdue (rhs in the examples above) — is
undtered. The same is true for copy assgnment-operators. However, there are occasionally good
reesons [3] for specifying and usng condructors and/or assgnment-operators where the rvaue is
dtered. Commonly, the values or resources are removed from the rvalue and into the copied-to instance
— the Ivdue (the ingtance on which the methods are cdled) — hence the terms “move constructor” and
“move assgnment-operator” to describe these operations.

1/1 @ Matthew Wilson, 2002, 2003

Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003

Adapting the previous class with move semantics in the condructor and assignment-operators requires
the author to explicitly provide both functions, since the compiler can provide only the copy vaiants.
We might imagine the implementation as follows:

class Sinple
publ i c:

explicit Sinple(int val)
: muval (val)
{}

Si mpl e(Si npl e &r hs)
: muval (rhs. mval)
{

}

Si nmpl e &operator =(Sinpl e & hs)
{

rhs.mval = 0; // “Rel ease” the resource

mval = rhs. mval;
rhs.mval = 0; // “Rel ease” the resource

return *this;

}

pr ot ect ed:
int mval;
}s

Note that both functions now take a non-const argument, so that they can modify the State of the rvaue.
In this example, the resource being held is an integer vadue, and so the “releasg’ of this resource is to
st it to 0. Of course, there are much more sophisticated examples of the use of move constructors and
move assgnment-operators, where the managed resource may be a file, a window, a container iteration
date, or an object dlocated on the hegp. These two functions perform move semantics correctly in the
following two scenarios

Simpl e s1(1);

Sinmpl e s2(sl); // Move constructor call ed.

Si npl e $3(2);

sl = s3; /'l Move assignnment operator called

Move condructors and assignment operators are required in other circumstances to these, however, and
that is where some of the challenges can be witnessed.

Moving Problems

Alas, only two compilers — Digita Mars C/C++ [4] and Watcom C/C++ 12.0 [WATCOM12] — fully
support move semantics [5], and only two others do partidly. Intd C/C++ and Visud C++ (except
verdon 7.1) support move semantics when language extensons are enabled [6]. (Table 1 lists the
support for many popular compilers.)

2/2 @ Matthew Wilson, 2002, 2003

Synesis Software Pty Ltd

Synesis Software Resources: -
White Papers I SIYIN]JE]|S] S http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003
Tablel

Compiler Move Semantics Move + Copy Constructor s*

Borland C/C++55—5.6 No Yes

Comeau C++ 4.30b, 4.3.1 No Yes

Digitd Mars C/C++ 8.26 —8.34 Yes Yes

GCC 2.95, 3.2 No Yes

Intel C/C++ 6 Yes, but viaRVO [9] Yes

(seetext)

with language extensons) Yes Yes

(guey

Metrowerks CodeWarrior 7 (2.4), 8 No Yes

(3.0

Microsoft Visua C++ 5, 6, .7.0 and No Only 7.0

7.1

(with language extensions) Yes Only 7.0

Microsoft Visual C++ 7.1 No Yes

Watcom C/C++ 12.0 Yes Yes

*Note that none of the tested compilers selected the move-constructor in a situation where either would suffice, so this
support isall but useless.

The generd lack of support is arguably reasonable [7], according to the rules of the language, which
(for good reason) dipulates that temporary objects cannot be bound to non-const reference parameters

[8]. For example, consder the following function that returns an ingtance of sinple, and an extract of
some client code:

Si npl e MakeSi npl e(int i)
{

b

return Sinple(i); // “move-ctor” called on explicit tenporary as return val ue

Sinple sl1(MakeSinple(10)); // “nove-ctor” called on return into sl

There are two points a which the (move) condructor would be cdled, as noted (dthough some
compilers may be able to gpply the Return Vdue Optimisation [9] to get rid of the second one).
Actudly, the compilers exhibit a variety of behavioursin this case (as shown in Tables2 & 3).

Interegtingly, without language extendons [6] enabled Intd C++ wans that it has dided the
inaccessble copy-condructor function whils peforming the RVO - “waning #734
"Smple:Smple(cons Smple &)", required for copy that was diminated, is inaccessbleé’ — which
seemsalittle scary. The code is only rendered legd by optimising out the illegd part!

3/3 @ Matthew Wilson, 2002, 2003

Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003

Digitd Mars and Waicom peforms an excelent job of optimisation, rendering the function cdl, the
temporary and the two (move) condructors down to a single inline congtruction Gi npl e(int)) cdl. To
be far, with language extensions [6] endbled, Visud C++ (5.0 — 7.0) performs the same optimisation,
though version 7.1 does not do so.

Const Casting

So the quedtion, then, is how can move semantics be achieved, without resorting to compiler-pecific
extensons, and for dl compilers? There are two ways, the smple (reed quick and dirty) and the
sophigticated. The smple verson involves accepting the compiler’s dictates, and then casting away the
congtness of the rvaue to release its resource. In other words, copy syntax with move semantics. For
example

class Sinple

{
publ i c:
Si nmpl e &operator =(Sinple const &hs) // A pronmi se not to change ...
{
mval = rhs. mval;
const _cast <Si npl e&>(rhs).mval = 0; // ... broken here!

return *this;

3

Needless to say, this is a very unpleasant way to achieve move semantics. It can cause many problems,
not leest of which is tha it switches off the compiler's ability to warn you about ingppropriate use. For
example, if we were to write the following innocent looking function

tenpl ate <typenane T>
voi d get_type_size(T const &)

T t(t));

printf(“sizeof(t): %\ n”, sizeof(t));
}

it would successfully compile with our revised class, due to its copy syntax. Internaly to the function,
the implementation uses move semantics, so client code of your classes would experience surprising
results, and your libraries would swiftly fal (from misuse) into disuse.

Despite this serious criticism, there are a limited few vdid uses of this technique, such as in the
implementation of supporting classes for other components. In such cases it is a Sraightforward matter
to implement functions and macros that resolve to usng casts on compilers that do not support move-
semantics, and to draight code on those that do. The STLSoft [10] libraries do jugt this in the form of
thestlsoft_define_nove rhs_type() macro andthenove | hs_fromrhs() function.

4/4 @ Matthew Wilson, 2002, 2003

Synesis

White Papers

M. D. Wilson, “Move Constructors”

Software Resources: I S

- ' Synesis Software Pty Ltd
VINIE]S] IS http://www.synesis.com.au

Moving By Proxy (Reference Transfer)

As described above, the const-cast technique is of limited utility when it comes to implementing robust
and usable classes with move semantics (and without nasty surprises). A better technique is to use
proxy (also called reference) objects that act as intermediaries in the condruction/assgnment, taking
responsibility for the (reference(s) to the) resources during the transfer — hence Reference Trander.
Because the proxy objects are passed by vaue, there are no issues with the consthess, or lack thereof,
of the arguments and return vaues of functions in which they are involved. To change the Sinple class

to use this technique, we would see something like the following:

class Sinple
{

private:

publ

struct Sinpl e_proxy
{

}s
ic:

explicit Sinple(int val)
: muval (val)
{}

Si mpl e(Si npl e &r hs) /'l Move const ruct or
: muval (rhs. mval)
{

}

Si npl e(Si npl e_pr oxy sp) /'l Proxy nove construct or
: muval (sp. mval)
{

}
Sinpl e &operator =(Sinmple & hs) // Mve assi gnnent operator
{

int m val ;

rhs.mval = 0;

sp. mval = 0;

mval = rhs. mval;
rhs. mval = 0;

return *this;

}

Si nmpl e operator =(Si npl e_proxy sp) // Proxy nove assi gnnent oper ator

{

mval = sp.muval;
sp. mval = 0;

return *this;

}

operator Sinple_proxy () // “to-proxy” inplicit conversion operator

{
Si npl e_pr oxy sp;

sp.mval = mval;

5/5 @ Matthew Wilson, 2002, 2003

Updated: 5™ September 2003

Synesis Software Pty Ltd

Synesis Software Resources: -
White Papers I S YIN]= S | S http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003

return sp;

}

pr ot ect ed:
int mval;
3

The compiler does not generate the copy-congructor, because we have provided a move-constructor
(which will be used where possble). Where the compiler would normaly be compdled to use the
copy-congructor (by dint of the temporaries being unacceptable for the move congructors), it will
sdect instead the operator Sinple_proxy() on the rvaue matched with the Sinpl e(Sinpl e_proxy sp)
constructor.

This technique is to be found in the latest incarnation of the standard library’s auto_ptr [1] smart-
pointer template, earlier implementations of this class used cond-casting. (See [11, 12] for an
interesting view on the hitory, and [13] for the modern version of the template.)

Since the sinpl e_proxy class is a Smple struct, and does not have vaue semantics [1] — or, rather,
does not in the generd case, eg. when used for pointer types - its use could result in loss of the
managed resource if the operator Sinple_proxy() method was invoked in isolation. This is prevented
by declaring si npl e_proxy as a member class, whose access is private, making inadvertent cal of the
conversgon nigh-on impossible.

Return Value (and other) Optimisations

We have seen with Digitd Mars, Inted and Watcom (and language-extended Visud C++ 5.0-7.0) that
compiler optimisations are having an effect on the way the code is generated. It would be worthwhile,
then, to see exactly what optimisations are being performed. The program shown below exercises the
semantics of the si npl e classin anumber of condruction and assignment scenarios.

Si npl e MakeSi npl e2(int i);

inline Sinple MakeSi nple(int i)
{

}

voi d UseSi npl e(Si npl e &s)
{

return Sinple(i);

Sinple sinple(s);

simple = s;

nt main(int, char**)

i

{

1 Sinple s1(1);
2 Sinple s2(sl);
3 Sinple s3(2);
4 Sinple const s4(3);
5 s2 = s3;

6/6 @ Matthew Wilson, 2002, 2003

Synesis Software Pty Ltd

\?\yhni?j;apsecr);tware Resources: I SIYIN]JE]|S] S http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003
6 UseSi npl e(s3);
7 Sinple s5(vakeSi npl e(4));
8 s5 = MakeSi npl e(5);
9 Sinple s6(MakeSi npl e2(6));

10 s6 = MakeSi npl e2(7);

return O;
}
Si npl e MakeSi npl e2(int i)
{
return Sinple(i);
}

In the program there are ten statements in which si npl e instances are either created or assgned. All the
compilerstested perform the same operations for the firg five statements, as shown in Table 2.

Table 2
Compiler 1,34 2
All compilers Simple::Simple(int) Simple::Simple(Simple&)
5 6
Simple::operator =(Simple &) UseSimple(Simple &)

Simple::Simple(Simple&)
Simple::operator =(Simple &)

As soon as temporaries and function cdls are involved, however, the differences are quite sgnificant,
asshownin Table 3.

The joint “winners’ ae Digitd Mars, Visud C++ (5.0-70 with language extensons - /Ze) and
Watcom, followed closdy by Intd and CodeWarrior, and that Visua C++ (5.0-7.0 without language
extensons - /Za - , and 7.1) is joint last with GCC. (Please remember that this ordering reflects only the
function-cal optimisaions. it does not in any way imply an ordering to the efficiencies of other
optimisations.)

717 @ Matthew Wilson, 2002, 2003

Synesis Software Resources: - S Synesis Software Pty Ltd
White Papers I S YIN]= S | http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003
Table3
Compller 7,9 8, 10
Borland C/C++ 5.51, 5.6 MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
Simple::Simple(int) Simple::Simple(int)
Simple::operator Simple_proxy() |Simple::operator Simple_proxy ()
Simple::Simple(Simple_proxy) Simple::operator =(Simple_proxy)
Simple::Simple(Smple &)
Digital Mars 8.30 MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
Simple::Simple(int) Simple::Simple(int)
Simple::operator =(Simple&)
GCC 2.95, 3.2 MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
Simple::Simple(int) Simple::Simple(int)
Simple::operator Simple_proxy () [Simple::operator Simple_proxy ()
Simple::Simple(Simple_proxy) Simple::Simple(Simple_proxy)
Simple::operator Simple_proxy () [Simple::operator Simple_proxy ()
Simple::Simple(Simple_proxy) Simple::operator =(Simple_proxy)
Simple::Simple(Simple &)
Intel C/C++ 7.0 MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
(with or without —Za) Simple::Simple(int) Simple::Simple(int)
Simple::Simple(Simple &) Simple::operator =(Simple&)
CodeWarrior 8 (3.0) MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
Simple::Simple(int) Simple::Simple(int)
Simple::operator Simple_proxy ()
Simple::operator =(Simple_proxy)
Simple::Simple(Simple &)
Visual C++ 5.0/6.0/7.0 (/Ze) MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
Simple::Simple(int) Simple::Simple(int)
Simple::operator =(Simple&)
Visual C++ 5.0/6.0/7.0 (/Za) MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
Simple::Simple(int) Simple::Simple(int)
Simple::operator Simple_proxy () [Simple::operator Simple_proxy ()
Simple::Simple(Simple_proxy) Simple::Simple(Simple_proxy)
Simple::operator Simple_proxy () [Simple::operator Simple_proxy ()
Simple::Simple(Simple_proxy) Simple::operator =(Simple_proxy)
Simple::Simple(Simple &)
Visual C++ 7.1 MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
(with or without —Za) Simple::Simple(int) Simple::Simple(int)
Simple::operator Simple_proxy () |Simple::operator Simple_proxy ()
Simple::Simple(Simple_proxy) Simple::Simple(Simple_proxy)
Simple::operator Simple_proxy () |Simple::operator Simple_proxy ()
Simple::Simple(Simple_proxy) Simple::operator =(Simple_proxy)
Simple::Simple(Simple &)
Watcom C/C++ 12.0 MakeSimple/MakeSimple2() MakeSimple/MakeSimple2()
Simple::Simple(int) Simple::Simple(int)
Simple::operator =(Simple&)

Pacing Visud C++ a the front and the back of the results presents an interesting decison for the
developer wishing to use move semantics in hisher code. However, it is possble to write
discriminating code, conditiond on the presence (/Ze) or absence (/Za) of the symbol _MsC_EXTENSI ONs
(_smoc__ is ued for C compilation only), tha will use “puré’ move semantics, a la Digitd
MarsWatcom, when language extensons are on, and that will use the proxy technique when they are
off.

8/8 @ Matthew Wilson, 2002, 2003

Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003

Conclusion

Move semantics can be a vey ussful pat of the functiondity of classes, but clash agangt some
important language rules and are, consequently, difficult to implement correctly. This aticle has
presented two dternatives for implementing move semantics.

Moving By Proxy (Reference Trander) is a rdatively complex solution, which mugt be implemented
on a per-class basis, but that works with al compilers, and it adheres to both the rules of the language
and common idiom.

Congt Cadting, by contrast, is Smpler, can be effected generdly (by the use of templates and macros),
but has invadid and mideading semantics. It's use is acceptable where suitable, but only where suitable;
one should opt for the more verbose and time-consuming Moving By Proxy everywhere dse.

In any case, the extra effort involved in Moving By Proxy is not redly too onerous, because move
semantics are not very common, and are, a least in my experience, entirdy redtricted to library/utility
classes, which (should) get more detailed and considered design, testing and documentation.

One last cavesat: you have to choose whether your type will be supporting copy semantics or move
semantics, snce you cannot have both. Whilgt it is true that some compilers will let you define both
(see Table 1), you'll have al kinds of trouble getting the compiler to sdect the one you want in al
circumgtances. All the compilers | tried this out on aways sdected the copy congtructor. Short answer:
don't doit!

Notes and References

[1] Bjarne Stroustrup, “ The C++ Programming Language”, Third Edition, Addison-Wesley, 1997

[2] Thisis so as long as the definition of the class's members allows it. If m val was declared as const i nt, then the
copy assignment-operator could not be automatically generated (though the copy-constructor could).

[3] An example is where one wishes to return allocated values from a function by wrapping them inside instances of
“managing” classes, in order to ensure that the resources are not leaked even when the function return isignored as aresult
of doppy programming. The following is the canonical auto_ptr<> example:

/! in Resource.h
cl ass Resource

virtual ~Resource() =0

{}

virtual void Execute() = 0;
typedef std::auto_ptr<Resource> Resource_ptr;
Resource_ptr CreateResource(int cArgs, char const **args);
/1 in ResourceFactory.cpp

Resource_ptr CreateResource(int cArgs, char const **args)

/'l Performsome processing to “switch” on the input args, and create
/1 an instance of one of a set of concrete sub-classes of Resource

if(...)
9/9 @ Matthew Wilson, 2002, 2003

Synesis Software Pty Ltd

Synesis Software Resources: -
White Papers I S YIN]= S | S http://www.synesis.com.au
M. D. Wilson, “Move Constructors” Updated: 5 September 2003

{

return Resource_ptr(new Si npl exResource(args[0]));

elseif(...)

{
return Resource_ptr(new Conpl exResource(args[0], args[1]));

}

el se

}

/1 in main.cpp
int main(int argc, char **argv)

{

Resource_ptr rptr = CreateResource(argc, reinterpret_cast<char const **>(argv));
rptr->Execute();

return O;

}

[4] Digita Mars C/C++, Intel C/C++ and Metrowerks CodeWarrior are, in my personal opinion, the most impressive
compilers currently available for the Windows platform. They do not come with anything like the exceedingly good Visual
C++ IDE (though Intel can plug into it with near 100% compatibility), but what's the good of having the best IDE when one
has a compiler that is so poor? | think it’s worth noting our two “winners’ — Digital Mars and Watcom — are free. Watcom is
open-source (http://openwatcom.ora/); though Digital Mars (http://www.digitalmars.con) is not, it is written by one man,
Walter Bright, who has been known to fix bugs and add new requested features in turnaround times that’d make a large
vendor’ s support engineer’s head spin. It doesn’t get any better than that! [Note that this article was written prior to the
release of Visual C++ 7.1, which represents a considerable improvement in the compiler, and it is now generally of a
very high quality; see the article “Comparing C++ Compilers’ in the October 2003 issue of Dr. Dobb’s Journal.
However, its improved language conformance has made it less competent at move semantics, so in respect of the
issues examined hereweremain to be wowed by Visual C++.]

[5] It is conceivable that Digital Mars C/C++ doesn’t actually support move semantics at all, but is simply so optimised that
it appearsthat way. | intend to consult Walter Bright on the matter.

[6] The /Ze option is on by default in Visual C++. Alas, so much of the Win32 API is dependent on the Visual C++
extensions, that very few non-trivial programs can be compiled with the option off (/Za).

[7] I have consulted with Walter Bright [4], and he assures me that the optimisations are valid.

[8] Scott Meyers, “More Effective C++”, Addison-Wesley, 1995. Item #16

[9] http://www.semantics.org/gotchas/gotcha36.pdf

[10] STLSoft is an open-source organisation whose focus is the development of robust, lightweight, cross-platform STL
software, and islocated at http://stlsoft.org.

[11] Scott Meyers, “Effective STL”, Addison-Wesley, 2001. Item #8

[12] http://www.awprofessional .com/content/images/020163371X /autoptrupdate%5Cauto_ptr_update.html

[13] http://anubis.dkuug.dk/jtcl/sc22/wg21/docs/papers/1997/N 1128. pdf

Copyright © 2002, 2003 by Matthew Wilson. matthew@synesis.com.au

10/10 @ Matthew Wilson, 2002, 2003

